Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.488
Filter
1.
Toxicol Lett ; 397: 1-10, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710400

ABSTRACT

Glycolic acid (GA) is extensively used in cosmetic formulations and skin peeling treatments but its adverse effects, notably severe disruption of epidermal structure, limit its clinical utility. However, the detailed impact of GA on epidermal homeostasis, including changes in structure and protein expression over time, is not fully understood. This study employed a reconstructed human epidermis (RHE) model to assess the effects of varying GA concentrations on epidermal proliferation, differentiation, and desquamation at different time points. Through histology, immunofluorescence, and immunohistochemistry, we observed that 35% GA concentration adversely caused abnormal epidermal homeostasis by affecting epidermal proliferation, differentiation and desquamation. Our findings reveal time-specific responses of key proteins to GA: Filaggrin, Involucrin, Loricrin, and Ki67 showed very early responses; KLK10 an early response; and AQP3 and K10 late responses. This research provides a detailed characterization of GA's effects in an RHE model, mimicking clinical superficial peeling and identifying optimal times for detecting GA-induced changes. Our results offer insights for designing interventions to mitigate GA's adverse effects on skin, enhancing the safety and efficacy of GA peeling treatments.

2.
APL Bioeng ; 8(2): 026108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38699629

ABSTRACT

Cardiac tissue engineering has emerged as a promising approach for restoring the functionality of damaged cardiac tissues following myocardial infarction. To effectively replicate the native anisotropic structure of cardiac tissues in vitro, this study focused on the fabrication of micropatterned gelatin methacryloyl hydrogels with varying geometric parameters. These substrates were evaluated for their ability to guide induced pluripotent stem cell-derived cardiomyocytes (CMs). The findings demonstrate that the mechanical properties of this hydrogel closely resemble those of native cardiac tissues, and it exhibits high fidelity in micropattern fabrication. Micropatterned hydrogel substrates lead to enhanced organization, maturation, and contraction of CMs. A microgroove with 20-µm-width and 20-µm-spacing was identified as the optimal configuration for maximizing the contact guidance effect, supported by analyses of nuclear orientation and F-actin organization. Furthermore, this specific micropattern design was found to promote CMs' maturation, as evidenced by increased expression of connexin 43 and vinculin, along with extended sarcomere length. It also enhanced CMs' contraction, resulting in larger contractile amplitudes and greater contractile motion anisotropy. In conclusion, these results underscore the significant benefits of optimizing micropatterned gelatin methacryloyl for improving CMs' organization, maturation, and contraction. This valuable insight paves the way for the development of highly organized and functionally mature cardiac tissues in vitro.

3.
Org Biomol Chem ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742377

ABSTRACT

In this study, a really simple and efficient catalytic protocol for the construction of quinazolines from alcohol and diamine has been developed based on CuCoAl layered double hydroxide (CuCoAl-LDH). The developed CuCoAl-LDH catalyst could accelerate the cascade reactions without any additives and tolerate various alcohols with satisfactory yields. Cooperation between the Cu+ and Cu2+ species in CuCoAl-LDH was observed in the cascade reaction, and they are believed to be responsible for the oxidation of alcohol and dehydrogenation of the intermediate, respectively. The promoting effect of the substrate diamine was observed in the oxidation of alcohol, which simplifies the reaction system by eliminating the requirement for a base additive. The catalytic system exhibited highly practical potential for the synthesis of quinazolines, as demonstrated through recyclability investigations and scale-up experiments. A possible catalytic mechanism has been proposed based on a series of control experiments and EPR analysis.

4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732136

ABSTRACT

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Subject(s)
Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Lignin , Plant Proteins , Lignin/biosynthesis , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Wall/metabolism , Cell Wall/genetics , Cellulose/biosynthesis , Cellulose/metabolism , Biosynthetic Pathways
5.
Anal Chem ; 96(18): 6906-6913, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656893

ABSTRACT

Glycerol tributyrate as a low-density lipoprotein plays a crucial role in drug development and food safety. In this work, a novel high-stability fiber optic sensor for glyceryl tributyrate based on the poly(acrylic acid) (PAA) and chitosan (CS) composite hydrogel embedding method is first proposed. Compared with traditional functionalization, the lipase in a polymer network structure used in this article can not only avoid chemical reactions that cause damage to the enzyme structure but also avoid the instability of ionic bonds and physical adsorption. Therefore, the PAA/CS hydrogel method proposed in this article can effectively retain enzyme structure. First, the impact of different layers (one to five layers) of PAA/CS on pH sensing performance was explored, and it was determined that layers 1-3 could be used for subsequent sensing experiments. Within the linear detection range of 0.5-10 mM, the detection sensitivities of the one to three layers of the biosensor are divided into 0.65, 0.95, and 1.51 nm/mM, respectively, with the three layers having the best effect. When the number of coating layers is three, the detection limit of the sensor is 0.47 mM, meeting the millimole level detection standard for anticancer requirement. Furthermore, the stability and selectivity of the sensor (in the presence of hemoglobin, urea, cholesterol, acetylcholine, and glucose) were analyzed. The three-layer sensor is used for sample detection. At concentrations of 1-10 mM, the absolute value of the recovery percentage (%) is 82-99%, which can accurately detect samples. The sensor proposed in this paper has the advantages of low sample consumption, high sensitivity, simple structure, and label-free measurement. The enzyme-embedding method provides a new route for rapid and reliable glyceryl tributyrate detection, which has potential applications in food safety as well as the development of anticancer drugs.


Subject(s)
Acrylic Resins , Chitosan , Optical Fibers , Surface Plasmon Resonance , Acrylic Resins/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Limit of Detection , Lipase/chemistry , Lipase/metabolism , Biosensing Techniques/methods
6.
Oncol Lett ; 27(6): 255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646493

ABSTRACT

Esophageal cancer (EC) is a common form of malignant tumor in the digestive system that is classified into two types: Esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinoma. ESCC is known for its early onset of symptoms, which can be difficult to identify, as well as its rapid progression and tendency to develop drug resistance to chemotherapy and radiotherapy. These factors contribute to the high incidence of disease and low cure rate. Therefore, a diagnostic biomarker and therapeutic target need to be identified for ESCC. Non-coding RNAs (ncRNAs) are a class of molecules that are transcribed from DNA but do not encode proteins. Initially, ncRNAs were considered to be non-functional segments generated during transcription. However, with advancements in high-throughput sequencing technologies in recent years, ncRNAs have been associated with poor prognosis, drug resistance and progression of ESCC. The present study provides a comprehensive overview of the biogenesis, characteristics and functions of ncRNAs, particularly focusing on microRNA, long ncRNAs and circular RNAs. Furthermore, the ncRNAs that could potentially be used as diagnostic biomarkers and therapeutic targets for ESCC are summarized to highlight their application value and prospects in ESCC.

7.
Int Dent J ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677972

ABSTRACT

OBJECTIVES: Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Lactic acid accumulation in the tumour microenvironment (TME) has gained attention for its dual role as an energy source for cancer cells and an activator of signalling pathways crucial to tumour progression. This study aims to reveal the impact of lactate-related genes (LRGs) on the prognosis, TME, and immune characteristics of OSCC, with the ultimate goal of developing a novel prognostic model. METHODS: Unsupervised clustering analysis of LRGs in OSCC patients from The Cancer Genome Atlas database was conducted to evaluate and compare TME, immune features, and clinical characteristics across various lactate subtypes. A refined prognostic model was developed through the application of Cox and Least absolute shrinkage and selection operator (LASSO) regression techniques. External validation sets were then utilised to improve model accuracy, along with a detailed correlation analysis of drug sensitivity. RESULTS: The Cancer Genome Atlas-OSCC patients were categorised into 4 distinct lactate subtypes based on LRGs. Notably, patients in subtype 1 and subtype 2 exhibited the least and most favourable prognoses, respectively. Subtype 1 patients showed elevated expression levels of immune checkpoint genes. Further analysis identified 1086 genes with significant expression differences between cancer and noncancer tissues, as well as between subtype 1 and subtype 2 patients. Selected genes for the prognostic model included ZNF662, CGNL1, VWCE, and ZFP42. The high-risk group defined by this model had a significantly poorer prognosis (P < .0001) and functioned as an independent prognostic factor (P < .001), accurately predicting 1-, 3-, and 5-year survival rates. Additionally, individuals in the high-risk category exhibited heightened sensitivity to chemotherapy drugs such as AZ6102 and Venetoclax. CONCLUSIONS: The predictive model based on the genes ZNF662, CGNL1, VWCE, and ZFP42 can serve as a reliable biomarker, providing accurate prognostic predictions for OSCC patients and potential opportunities for pharmaceutical interventions.

8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645858

ABSTRACT

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Subject(s)
Bone Development , Cell Differentiation , Chondrocytes , Core Binding Factor Alpha 2 Subunit , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Animals , Bone Development/physiology , Bone Development/genetics , Chondrocytes/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Osteoclasts/metabolism , Osteoclasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Bone Diseases/genetics , Bone Diseases/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/etiology
9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1255-1259, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621972

ABSTRACT

The components with hypoglycemic activity in Plumeria rubra were isolated and purified by various column chromatography techniques and activity tracing methods. The physical and chemical properties of all the purified monomer compounds were characterized and analyzed, and a total of six compounds were isolated and identified, including 6″-acetyl-6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside(1), 6-acetyl-6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-glucoside(2), 2-hydroxy-6-methoxy-benzyl-benzoate-2-O-ß-D-glucoside(3), 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside(4), 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-glucoside(5), and 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-xyloside(6). Compounds 1 and 2 were new compounds, and compounds 3-6 were isolated from Plumeria for the first time. The α-glucosidase inhibitory activity of six identified compounds was tested. The results show that compounds 1-6 show certain inhibitory activity with an IC_(50) value ranging from 8.2 to 33.5 µmol·L~(-1).


Subject(s)
Apocynaceae , Glucosides , Glucosides/chemistry , Benzoates
10.
World J Gastrointest Endosc ; 16(3): 117-125, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38577648

ABSTRACT

Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is a means to procure adequate specimens for histological and cytologic analysis. The ideal EUS-FNA should be safe, accurate, and have a high sample adequacy rate and low adverse events rate. In recent years, many guidelines and trials on EUS-FNA have been published. The purpose of this article is to provide an update on the influence of some of the main factors on the diagnostic efficiency of EUS-FNA as well as a rare but serious complication known as needle tract seeding.

11.
Appl Opt ; 63(10): 2462-2468, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38568524

ABSTRACT

In this paper, the green upconversion (UC) fluorescence emission from E r 3+/Y b 3+/H o 3+ tri-doped tellurite glass is investigated for temperature sensing. The doping of H o 3+ ions not only enhances the chance of energy level transition but also avoids the influence of the thermal effect caused by the proximity of 2 H 11/2 and 4 S 3/2 energy levels. The luminescence characteristics at different Y b 3+ and H o 3+ ion concentration doping molar ratios were investigated, and the strongest luminescence characteristics were exhibited when the Y b 3+ ion concentration was at 5 mol% and H o 3+ at 0.2 mol%. Based on this, a tri-doped T e O 2-Z n O-B i 2 O 3 (TZB) no-core fiber was fabricated and connected with multimode fibers (MMFs) to form a temperature sensor. The temperature sensing performance of the tri-doped TZB temperature sensor was evaluated in detail over the temperature range of 255-365 K. The repeatability and stability of the temperature sensor was experimentally verified. The E r 3+/Y b 3+/H o 3+ tri-doped sensor can be used for noninvasive optical temperature sensing in the fields of environmental monitoring, biological sensing, and industrial process temperature control, etc.

12.
Appl Opt ; 63(10): 2746-2749, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38568560

ABSTRACT

In this paper, a high-power all-solid-state ultrafast 2 µm mode-locked laser is investigated. The particularity of this laser is the simultaneous utilization of two Tm:YAP crystals in the same resonant cavity, independently pumped by two laser diodes. Using a 20% output coupler, pulses with output power as high as 1.83 W are achieved at a wavelength of 1938 nm with a pulse duration of 1.97 ps and a pulse repetition frequency of 100 MHz. To our knowledge, this mode-locked laser achieves the highest output power of any mode-locked Tm:YAP ultrafast laser reported to date. In addition, this paper provides a new approach to solve the problem of low output power due to multi-mode low-brightness laser diode pumping.

13.
Chem Biodivers ; : e202400937, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682724

ABSTRACT

Three new indole alkaloids, named talatensindoids A-C (1-3), together with two known biogenetically related indole alkaloids tryptamine (4) and L-tryptophan (5) were isolated from the Talaromyces assiutensis JTY2 based on the guidance of OSMAC approach. The structures of these indole alkaloids were determined by comprehensive spectroscopic analyses. The absolute configuration of 3 was confirmed by X-ray crystallographic analysis. Compound 1 represent the rare example of a chlorine-substituted indole alkaloid from natural products. The inhibitory activity of compounds 1-5 against two phytopathogenic fungi and three phytopathogenic bacteria was evaluated. Compound 1 exhibited broad spectrum antibacterial activities.

14.
J Mol Cell Biol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578631

ABSTRACT

The recognition of cytosolic nucleic acid triggers the DNA/RNA sensor-IRF3 axis-mediated production of type I interferons (IFNs), which are essential for antiviral immune responses. However, the inappropriate activation of these signaling pathways is implicated in autoimmune conditions. Here, we report that indomethacin, a widely used nonsteroidal anti-inflammatory drug, inhibits nucleic acid-triggered IFN production. We found that both DNA- and RNA-stimulated IFN expression can be effectively blocked by indomethacin. Interestingly, indomethacin also prohibits the nuclear translocation of IRF3 following cytosolic nucleic acid recognition. Importantly, in cell lines and a mouse model of Aicardi-Goutières syndrome, indomethacin administration blunts self-DNA-induced autoimmune responses. Thus, our study reveals a previously unknown function of indomethacin and provides a potential treatment for cytosolic nucleic acid-stimulated autoimmunity.

16.
Risk Manag Healthc Policy ; 17: 701-713, 2024.
Article in English | MEDLINE | ID: mdl-38549689

ABSTRACT

Objective: To evaluate the prevalence and influencing factors of long COVID, and measure the difference in health status between long COVID and non-long COVID cases. Methods: A cross-sectional survey was conducted from February 1 to 8, 2023, using a stratified random sampling method in four regions (eastern [Changzhou], central [Zhengzhou], western [Xining] and northeastern [Mudanjiang]) of China. The survey collected COVID-19 patients' socio-demographic characteristics and lifestyles information. The scores of lifestyles and health status range from 5 to 21 and 0 to 100 points, respectively. The criteria of "persistent health problems after 4 weeks of COVID-19 infection" issued by the US Centers for Disease Control and Prevention was used to assess long COVID. Multiple linear regression was used to analyze the influencing factors of the health. The bootstrap method was used to analyze the lifestyles' mediating effect. Propensity score matching (PSM) was used to evaluate the net difference in health scores between long COVID and non-long COVID cases. Results: The study included 3165 COVID-19 patients, with 308 (9.73%) long COVID cases. The health score of the long COVID cases (74.79) was lower than that of the non-long COVID cases (81.06). After adjusting for potential confounding variables, we found that never focused on mental decompression was a common risk factor for the health of both groups. Lifestyles was the mediating factor on individuals' health. After PSM, the non-long COVID cases' health scores remained higher than that of long COVID cases. Conclusion: The proportion of long COVID cases was low, but they were worse off in health. Given the positive moderating effect of healthy lifestyles on improving the health of long COVID cases, healthy lifestyles including mental decompression should be considered as the core strategy of primary prevention when the epidemic of COVID-19 is still at a low level.

17.
PLoS One ; 19(3): e0300921, 2024.
Article in English | MEDLINE | ID: mdl-38527012

ABSTRACT

This study examines how various environmental and economic variables contribute to environmental degradation. Industrialization, trade openness, and foreign direct investment are among the variables, as are environmental diplomacy, environmental diplomacy secure, and renewable energy consumption. Therefore, the data covers the years 1991-2020, and our sample includes all 19 countries and two groups (the European Union and the African Union). The research used the Pesaran CD test to determine cross-section dependency, CIPS and CADF test to determine stationarity, the Wald test for hetrodcedasasticity and the Wooldridge test for autocorrelation; therefore, VIF for multicollinearity, Durbin and Hausman to analyze the endogeneity. It also employed Westerlund's cointegration test to ensure cross-sectional dependence, Wald test for group-wise heteroscedasticity, Wooldridge test for autocorrelation, VIF for multicollinearity, and Durbin and Hausman for endogeneity. The two-step system generalized method of moments (GMM) is used to estimate the results and confirm the relationship between independent variables (Industrialization, trade openness, FDI, environmental diplomacy, secure environmental diplomacy, and renewable energy) and dependent variables (Environmental Degradation) in G20 countries. Therefore, Industrialization, trade openness, foreign direct investment, ecological diplomacy, and renewable energy consumption significantly impact ecological degradation. Environmental diplomacy is crucial to combat degradation and stimulate global collaboration. G20 nations enact strict environmental restrictions to tackle climate change and encourage economic growth.


Subject(s)
Diplomacy , Cross-Sectional Studies , Carbon Dioxide , Renewable Energy , Economic Development , Investments
18.
Sci Total Environ ; 925: 171745, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508257

ABSTRACT

Forests are significant carbon reservoirs, with approximately one-third of this carbon stored in the soil. Forest thinning, a prevalent management technique, is designed to enhance timber production, preserve biodiversity, and maintain ecosystem functions. Through its influence on biotic and abiotic factors, thinning can profoundly alter soil carbon storage. Yet, the full implications of thinning on forest soil carbon reservoirs and the mechanisms underpinning these changes remain elusive. In this study, we undertook a two-year monitoring initiative, tracking changes in soil extracellular enzyme activities (EEAs), microbial communities, and other abiotic parameters across four thinning intensities within a temperate pine forest. Our results show a marked increase in soil carbon stock following thinning. However, thinning also led to decreased dissolved organic carbon (DOC) content and a reduced DOC to soil organic carbon (SOC) ratio, pointing toward a decline in soil carbon lability. Additionally, fourier transform infrared spectroscopy (FTIR) analysis revealed an augmented relative abundance of aromatic compounds after thinning. There was also a pronounced increase in absolute EEAs (per gram of dry soil) post-thinning, implying nutrient limitations for soil microbes. Concurrently, the composition of bacterial and fungal communities shifted toward oligotrophic dominance post thinning. Specific EEAs (per gram of soil organic matter) exhibit a significant reduction following thinning, indicating a deceleration in organic matter decomposition rates. In essence, our findings reveal that thinning transitions soil toward an oligotrophic state, dampening organic matter decomposition, and thus bolstering the soil carbon storage potential of forest. This study provides enhanced insights into the nuanced relationship between thinning practices and forest soil carbon dynamics, serving as a robust foundation for enlightened forest management strategies.


Subject(s)
Microbiota , Soil , Soil/chemistry , Carbon , Forests , Organic Chemicals , Soil Microbiology , Dissolved Organic Matter
19.
Nat Prod Res ; : 1-8, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436324

ABSTRACT

Phytochemical investigation on the plant endophytic fungus Penicillium ferraniaense GE-7 led to the isolation of 18 compounds including one new α-pyrone derivative, peniferranige A (1). The structure including the absolute configuration of compound 1 was elucidated by NMR, HRMS, and ECD data. Demethoxyfumitremorgin C (16) and meleagrin (17) possessed moderate activities against the human lung cancer cell line H1975 with IC50 values of 28.52 ± 1.07 and 13.94 ± 1.92 µM, respectively.

20.
Front Microbiol ; 15: 1329938, 2024.
Article in English | MEDLINE | ID: mdl-38544860

ABSTRACT

Introduction: This study assessed the effects of S application on maize yields and soil bacterial communities across four sites with different soil types and three S application rates (0 kg ha-1, 30 kg ha-1, and 90 kg ha-1). Methods: Changes in soil properties, bacterial community diversity, structure, and their contributions to maize production were evaluated post-S application treatments. Results: (1) S application decreased soil pH, increased available sulfur (AS), and boosted maize yields in all soil types. (2) Reduced Chao1 and Shannon diversity indices were observed in black soil after S application. (3) Bacterial community structure was significantly affected by S application, except in sandy soil, impacting key stone taxa abundance. (4) Black soil showed higher sensitivity to S application due to less stable bacterial community structure. (5) Soil physicochemical indicators altered by S application, such as AS and pH, mediated bacterial diversity, influencing maize yield. Organic matter (OM) had the most significant direct positive effect on yield, followed by AS and bacterial community diversity. Discussion: This study emphasizes the impact of S application on soil properties and bacterial communities in diverse soil types. Understanding these mechanisms can guide precision S application practices for maize yield regulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...